

JAR-003-0011002

Seat No.

B. Sc. (Sem. I) (CBCS) Examination

December - 2019

Physics: 101

(Mechanics & Semiconductor Electronics) (New Course)

Faculty Code: 003

Subject Code: 0011002

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions:

- (1) All questions are compulsory.
- (2) Symbols have their usual meanings.
- (3) Figures to the right indicate marks.
- 1 (a) Answer the following in short:

4

- (1) For a vector \overrightarrow{PQ} , $\overrightarrow{PQ} = \overrightarrow{QP}$ Yes or No.
- (2) If $\overrightarrow{A} = 5 \hat{i}$ and $\overrightarrow{B} = 3 \hat{j}$ then $\overrightarrow{A} \cdot \overrightarrow{B} = \dots$?
- (3) What is called active components?
- (4) What will be the internal impedance of an ideal voltage source ?

1

(b) Answer in brief: (any one)

2

- (1) Explain addition of two vectors.
- (2) Give the classification of MOSFET.

	(c)	Answer in detail : (any one)		
		(1)	Prove that $(A \times B) \times C + (B \times C) \times A + (C \times A) \times B = 0$).
		(2)	How long will it take for voltage to drop from 100 V to 50 V in a RC series circuit of time constant 1 sec?	
	(d)	Ans	wer in detail : (any one)	5
		(1)	Describe Vector triple product.	
		(2)	Obtain the expression of growth and decay of charge in RC circuit.	
2	(a)	Ans	wer the following in short:	4
		(1)	What is semiconductor material?	
		(2)	Define intrinsic semiconductors.	
		(3)	Write basic difference between ordinary PN diode and zener diode.	
		(4)	What happens to electrical resistivity of a semiconductor if temperature is increased ?	
	(b) An		swer in brief: (any one)	
		(1)	What is dynamic resistance of a diode?	
		(2)	Explain ideal diode.	
	(c)	Answer in detail : (any one)		
		(1)	Explain the energy bands in insulator, semiconductor and conductor.	
		(2)	What is P-Type and N-Type semiconductor material?	
	(d)	Ans	wer in detail : (any one)	5
		(1)	Explain V-I characteristic of a P-N Junction diode.	
		(2)	Explain V-I characteristic of a zener diode in detail.	
JAR-003-0011002]			[Conto	ł

JAR-003-0011002]			002] 3 [Conto	1
		(2)	Explain the state of weightlessness.	
		(1)	Explain angular acceleration.	
	(b)	Ans	wer in brief: (any one)	2
		(4)	What is escape velocity?	
			between \overrightarrow{r} and a \overrightarrow{F} is?	
		(3)	Torque acting on the particle is maximum when angle	
		(2)	State: Kepler's second law of planetary motion.	
		(1)	Write definition of moment of inertia.	
1	(a)	Ans	wer the following in short :	4
			is constant.	
			show that linear momentum of a system of particle	
			momentum in the absence of external force acting,	
		(2)	Explain the principle of conservation of linear	
			propulsion.	
		(1)	Describe the system of variable mass and rocket	
	(d)	Ans	wer in detail : (any one)	5
			it exerts on the block?	
			10 cm into wooden block, what will be average force	
		(2)	A 20 gm bullet travelling with 100 m/s penetrates	
			deep to the surface.	
		` /	3000 kg water per minute from a well 20 meter	
	` /	(1)	Calculate the horse power (HP) needed to pumping	
	(c)			
		(2)	Define potential energy and obtain an expression for i	t.
	(0)	(1)	Explain Newton's second law of motion.	_
	(b)	()	wer in brief: (any one)	2
		(4)	Define work and power.	
		(2) (3)	Write two main catagories of collision. Define coefficient of restitution.	
		(1)	State: Newton's third law of motion.	
		(1)	State . Marriagle third large of mation	

(a) Answer the following in short:

3

	(c)	Ansv	wer in detail : (any one)	3
		(1)	The MI of a body of mass 10 kg about an axis	
			2 cm away from its CM is 50 kg m ² , find its	
			MI about a parallel axis 3 m away from its CM.	
		(2)	If an application of break to a car running with a	
			linear velocity 72 kg/hr it stops after 15 sec. due	
			to constant angular retardation, find the angular	
			acceleration of the wheels, if the radius of wheels	
			is 60 cm.	
	(d)	Ansv	wer in detail : (any one)	5
		(1)	Explain angular momentum of a rigid body and	
			prove that $\overrightarrow{\tau} = I \overrightarrow{\alpha}$.	
		(2)	State and prove the theorems of moment of inertia.	
5	(a)	Ansv	wer the following in short:	4
_	()	(1)	Define strain.	-
		(2)	What are the theoretical value of Poisson's ratio?	
		(3)	Define restoring force of a spring.	
		(4)	In a simple pendulum, what happens if θ is not	
			small enough ?	
	(b)	Ansv	wer in brief: (any one)	2
	()	(1)	Explain elasticity and its types.	
		(2)	Define damped harmonic motion and discuss the	
			factors affecting on it.	
	(c)	Ansv	wer in detail : (any one)	3
		(1)	A load of 8 kg is suspended from a support using	
			a wire of radius 0.2 cm find the tensile stress at	
			equilibrium. Take $g = 3.117 \text{ m/s}^2$.	
		(2)	The resultant force acting on a particle, performing	
			simple harmonic motion is 1 N when it is 2 cm	
			away from the mean position, find the spring constant.	
	(d)	Ansv	wer in detail : (any one)	5
		(1)	Explain various types of strains.	
		(2)	Explain the total mechanical energy is conserved in	
			simple harmonic motion.	

4

[2800/80-40]

JAR-003-0011002]